Theoretical Investigation of Phonon Polaritons in SiC Micropillar Resonators

نویسندگان

  • Christopher R. Gubbin
  • Stefan A. Maier
  • Simone De Liberato
چکیده

Of late there has been a surge of interest in localised phonon polariton resonators which allow for sub-diffraction confinement of light in the mid-infrared spectral region by coupling to optical phonons at the surface of polar dielectrics. Resonators are generally etched on deep substrates which support propagative surface phonon polariton resonances. Recent experimental work has shown that understanding the coupling between localised and propagative surface phonon polaritons in these systems is vital to correctly describe the system resonances. In this paper we comprehensively investigate resonators composed of arrays of cylindrical SiC resonators on SiC substrates. Our bottom-up approach, starting from the resonances of single, free standing cylinders and isolated substrates, and exploiting both numerical and analytical techniques, allows us to develop a consistent understanding of the parameter space of those resonators, putting on firmer ground this blossoming technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of Nonlinear s-Polarized Phonon-Polaritons in Multilayered Structures

A theory is presented for the dispersion relations of the nonlinear phonon-polaritons arising when phonons are coupled to the electromagnetic waves in multilayered structures of nonlinear materials. The calculations are applied to a multilayered structure consisting of a thin film surrounded by semi-infinite bounding media where each layer may have a frequency dependent dielectric function and ...

متن کامل

Coherent coupling between localised and propagating phonon polaritons

Following the recent observation of localised phonon polaritons in user-defined silicon carbide nano-resonators, here we demonstrate coherent coupling between those localised modes and propagating phonon polaritons bound to the surface of the nano-resonator’s substrate. In order to obtain phase-matching, the nano-resonators have been fabricated to serve the double function of hosting the locali...

متن کامل

Analysis of the phonon-polariton response of silicon carbide microparticles and nanoparticles by use of the boundary element method

We investigate the small-particle phonon-polariton response of several microstructures that are made of silicon carbide (SiC). Phonon polaritons can be excited in a wavelength region between 10 and 12 mm. Simple structures such as elliptical cylinders support phonon polaritons at two wavelengths, which depend on the axis ratio of the particle. In particles with a more irregular shape such as re...

متن کامل

Second Harmonic Generation Spectroscopy in the Reststrahl Band of SiC Using an Infrared Free-Electron Laser

The Reststrahl spectral region of Silicon Carbide has recently attracted much attention owing to its potential for mid-infrared nanophotonic applications based on surface phonon polaritons (SPhPs). Studies of optical phonon resonances responsible for surface polariton formation, however, have so far been limited to linear optics. In this Letter, we report the first nonlinear optical investigati...

متن کامل

Resonance perfect absorption by exciting hyperbolic phonon polaritons in 1D hBN gratings.

Natural materials with hyperbolic responses can confine light with well-defined propagation directions inside the micro/nanostructure. Here we theoretically demonstrate that strong resonance absorption can be achieved in one-dimensional gratings made of hexagonal boron nitride (hBN) due to hyperbolic phonon polaritons. The radiative properties of both trapezoidal and square resonators are calcu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017